Regular Article – Experimental Physics

Near-side $\Delta \eta$ correlations of high- p_{t} hadrons from STAR

J. Putschke^a for the STAR Collaboration

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Received: 10 August 2006 / Published online: 28 November 2006 – © Springer-Verlag / Società Italiana di Fisica 2006

Abstract. Systematic measurements of pseudorapidity $(\Delta \eta)$ and azimuthal $(\Delta \varphi)$ correlations between highpt charged hadrons and associated particles from the high statistics 200 GeV Au + Au and Cu + Cu datasets will be presented. In previous measurements differences in the near-side $\Delta \eta$ correlation between central Au + Au and the lighter systems, d + Au and p+p, were observed, including a long-range near-side correlation in Au + Au collisions. Studies to characterize the properties of the long-range correlation will be presented.

PACS. 25.75.Dw; 25.75.Gz

Azimuthal dihadron correlation studies in d + Au and Au + Au collisions [2, 3] have shown that hard partons from initial-state, back-to-back scatterings interact strongly with the system that is created, and can be used as a probe of the medium. The observation of additional near-side long-range $\Delta \eta$ correlations for soft hadrons ($p_t < 2 \text{ GeV}$) in Au + Au collisions was first noted in [1]. Similar effects were observed in dihadron correlations in [4,5] but in a kinematic regime where parton fragmentation may play a significant role. In these proceedings the enhanced statistics in Au + Au and Cu + Cu will be used for systematic studies of the correlated yield dependence on centrality, transverse momentum of the trigger ($p_{t,trigger}$) and associated particles ($p_{t,assoc.}$) to characterize the properties of the long-range $\Delta \eta$ correlation.

To extract the correlated yield of the near-side longrange $\Delta \eta$ correlation (*ridge yield*) from dihadron correlation measurements, we take advantage of the η and φ acceptance of the STAR-TPC, by projecting the two dimensional ($\Delta \eta \times \Delta \varphi$) correlation function onto $\Delta \varphi$ and $\Delta \eta$ in different $\Delta \eta \times \Delta \varphi$ regions after correcting for the finite $\Delta \eta$ pair- acceptance. Three methods were used to characterize the short-range *jet-like* (J) and *ridge-like* (R) contributions to the near-side jet yield¹ in $\Delta \eta$ and $\Delta \varphi$:

- $-\Delta \varphi(J+R)$ method: Projecting onto $\Delta \varphi$ with the full experimental $\Delta \eta$ acceptance and subtracting the elliptic flow (v_2) modulated background.
- $-\Delta \varphi(\mathbf{J})$ method: Subtracting the $\Delta \varphi$ projection for $|\Delta \eta| > 0.7$ from the $\Delta \varphi$ projection $|\Delta \eta| \leq 0.7$ (near-side).

 $-\Delta\eta(J)$ method: Projecting onto $\Delta\eta$ in a $\Delta\varphi$ window $|\Delta\varphi| < 0.7$ (near-side). A constant fit to the measurements was used to subtract the background.

In Fig. 1 the near-side yield is shown as a function of N_{part} for all three methods. The agreement of the measured jet-like yield using the $\Delta \eta(\mathbf{J})$ and $\Delta \varphi(\mathbf{J})$ method as function of N_{part} supports the assumption that the ridgelike correlation is uniform in the $\Delta \eta$ acceptance. Further detailed studies of the ridge shape in the high statistics $A\mathbf{u} + A\mathbf{u}$ central data set will be pursued. Note that the jet-like correlated yield is independent of centrality and agrees with the p+p reference measurements [5]. In contrast the $\Delta \varphi(\mathbf{J} + \mathbf{R})$ method shows a significant increase of

Fig. 1. Near-side yield as a function of N_{part} in Au + Au

^a e-mail: JHPutschke@lbl.gov

¹ The near-side yield is defined as the integral of a Gaussian fit to the $\Delta\varphi$, $\Delta\eta$ correlation functions.

Fig. 2. (Absolute) Ridge yield for different centralities as a function of $p_{t,trigger}$ for $p_{t,assoc.} > 2$ GeV in Au + Au

the near-side yield with centrality due to the inclusion of the correlated yield at large $\Delta \eta$ (ridge).

Therefore one can define the (absolute) ridge yield = yield $(\Delta \varphi(\mathbf{J} + \mathbf{R})) - yield (\Delta \eta(\mathbf{J}))^2$. The main systematic error is due to the uncertainty in the elliptic flow measurement for the $\Delta \varphi(\mathbf{J} + \mathbf{R})$ method. The v_2 values used in this analysis are: the mean of the reaction plane $(v_2\{\mathbf{RP}\})$ and four-particle cumulant method $(v_2\{4\})$ [6] in Au + Au and the scalar product method $v_2\{\operatorname{CuCu} - pp\}$ in Cu + Cu [7]. The systematic uncertainties were estimated using $v_2\{\mathbf{RP}\}$ as maximum and $v_2\{4\}$ as minimum v_2 values for Au + Au (represented as lines in all figures). For Cu + Cu $v_2 = 0$ as minimum v_2 value was used.

One important feature of the near-side long-range $\Delta \eta$ correlation is the observation that the (absolute) ridge yield is independent of $p_{t,trigger}$ for each centrality class, but increasing with centrality as shown in Fig. 2. If the ridge is caused by radiative energy loss coupling to longitudinal flow [8], the $p_{t,trigger}$ independence of the ridge yield would be consistent with a jet energy independent energyloss mechanism. This would indicate, that the near-side parton experienced some energy loss by probing a finite path-length in the medium before fragmenting.

To characterize in more detail the properties of particles associated to the ridge-like respective jet-like nearside correlation we use the $p_{t,assoc.}$ spectrum in different $p_{t,trigger}$ windows, as shown in Fig. 3. An exponential function $\frac{dN}{dp_t} \propto p_t e^{-p_t/T}$ is fitted to the data to extract the slope of the the $p_{t,assoc.}$ spectrum. Results are given in Table 1. The $p_{t,assoc.}$ spectrum for the near-side jet-like correlation is harder than the inclusive spectrum – even for the lowest $p_{t,trigger}$ window – and shows a significant hardening as function of $p_{t,trigger}$, as one would expect from jet fragmentation. In contrast to the jet-like part, the slope of the

Fig. 3. Ridge/jet-like yield (*filled/open symbols*) as function of $p_{\rm t,assoc.}$ for different $p_{\rm t,trigger}$ in 0–10% central Au+Au collisions. As reference the inclusive spectrum (0–5% central Au+Au, *stars*) is also shown [9]. The *lines* represents exponential fits to the data

ridge-like correlation is basically independent of $p_{\rm t,trigger}$ and only slightly harder, by approximately 40–50 MeV, than the inclusive spectrum.

This observation suggests that the near-side $\Delta \eta \times \Delta \varphi$ correlation consists of two distinct components. The jetlike part, consistent with the p+p and d+Au di-hadron reference measurements [4,5], and the ridge-like part with more bulk-like than jet-like properties, elongated in $\Delta \eta$, but still correlated in $\Delta \varphi$ with the near-side jet. One might speculate that the appearance of the ridge could be interpreted as a direct measure of the medium response to energy loss in central Au + Au collisions.

Another experimental possibility allowing further insight into the ridge properties is to study the ridge-like correlation for identified associated particles. The quantity used in this analysis is the relative ridge yield defined by normalizing the ridge yield to the jet-like yield $\Delta \eta(J)$. In Fig. 4 the relative ridge yield for identified associated π^{\pm} , $p + \bar{p}$ and, as a reference, for charged particles in 0–10% central Au + Au is shown. From the measurements presented in Fig. 4 one can conclude that the proton content of the ridge-like correlation is larger than [that of] the jet-like correlation. In order to distinguish between recombination of thermal partons in the recombination framework [10] or a change of the π^{\pm} , $p + \bar{p}$ ratio in the jet fragmentation

Table 1. Slope parameter T from an exponential fit (see Fig. 3) to the $p_{t,assoc.}$ spectrum in different $p_{t,trigger}$ bins for ridge-like (T_{Ridge}) and jet-like (T_{Jet}) near-side correlations

$p_{\rm t,trigger}$ [GeV]	$T_{\rm Ridge} \; [{ m MeV}]$	$T_{\rm Jet} \; [{\rm MeV}]$
4-5	395.8 ± 9	545.7 ± 13
5-6	370.1 ± 30	664.4 ± 22
6-8	447.3 ± 46	777.1 ± 29
8-12	393.2 ± 121	934.1 ± 55

² One should note that the absolute (and relative) ridge yield depend on the $\Delta\eta$ integration window, which has been chosen as $|\Delta\eta| < 1.7$ in this analysis.

Fig. 4. Relative ridge yield for identified associated π^{\pm} , $p + \overline{p}$ and charged particles as function of $p_{t,trigger}$ in 0–10% central Au + Au collisions

as the cause of the enhanced proton content in the ridge, a measurement of the (absolute) ridge yield is necessary. This measurement is still in progress and results will be available in the near future. A study focused on identified associated strange particles is already available and can be found in [11].

In Fig. 5 the centrality dependence of the relative ridge yield in Au+Au compared with Cu+Cu collisions is shown. In the overlapping N_{part} region the relative ridge yield in Cu+Cu is similar to Au+Au. A similar N_{part} scaling in Au+Au and Cu+Cu collisions is observed for the nuclear modification factor [12], indicating that these effects could have the same origin.

The underlying physics of these effects is not quite clear yet, but the independence of the (absolute) ridge yield on $p_{t,trigger}$ is consistent with a picture on which the ridge is caused by the coupling of induced radiation to longitudinal flow [8] with a radiation spectrum that is independent of the jet energy. Alternative approaches to describe these phenomena are based on a combination of jet-quenching and strong radial flow [13] or on recombination of locally thermal enhanced partons due to partonic energy loss in the recombination framework [10]. To what extent the presented results – slope of the ridge-like correlations slightly harder than the inclusive spectrum and a first look at identified associated π^{\pm} and $p + \bar{p}$ – might help to distinguish between these models is unclear yet. A comparison of quantitative theoretical calculations to the experimental measurements

Fig. 5. Centrality dependence of the relative ridge yield for Au + Au and Cu + Cu. The *lines* represent the systematic error due to uncertainties in the elliptic flow measurements

are needed in order to understand the origin of the ridge yield.

References

- STAR Collaboration, J. Adams et al., nucl-ex/0411003 (2004)
- STAR Collaboration, C. Adler et al., Phys. Rev. Lett. 90, 082 302 (2003) [nucl-ex/0210033]
- STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 95, 152 301 (2005) [nucl-ex/0501016]
- 4. P. Jacobs, Eur. Phys. J. C 43, 467 (2005) [nucl-ex/0503022]
- 5. D. Magestro, Talk given at Hard Probes 2004
- STAR Collaboration, J. Adams et al., nucl-ex/0409033 (2004)
- STAR Collaboration, G. Wang et al., nucl-ex/0510034 (2005)
- N. Armesto et al., Phys. Rev. Lett. 93, 242 301 (2004) [hepph/0405301]
- STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 91, 172 302 (2003) [nucl-ex/0305015]
- C.B. Chiu, R.C. Hwa, Phys. Rev. C 72, 034903 (2005) [nucl-th/0505014]
- STAR Collaboration, J. Bielcikova et al., Proc. Hot Quarks 2006
- STAR Collaboration, J.C. Dunlop et al., nucl-ex/0510073 (2005)
- S.A. Voloshin, Nucl. Phys. A **749**, 287 (2005) [nucl-th/ 0410024]